John Carmack Quakecon 2004 Keynote

I'm mostly going to ramble on about graphics technology and hindsight on the Doom 3 engine and where I'm going for the next generation, and I'll talk a bit about sound and some of the other technologies.

So, the decisions that I made with the Doom 3 renderer were made over four years ago, and they turned out pretty good as far as I'm concerned with how the hardware evolved and what we were able to produce in the game with that, but it is time now to go ahead and re-evaluate where things are with the current hardware and where things are likely to be over the next several years, and basically make a new rendering engine based on those decisions.

So there are a few flaws you can see in Doom 3 if you look at it from a graphics perspective. One of the most obvious ones is you get some seams down some of the character heads where a mirroring repeat is used on the texturing. That's not so much an engine problem, as we just should go ahead and spend the extra texture memory and not have any texture seams across directly visible areas, but there may be some things I do with the calculation of the tangent space vectors that can clean that up a little bit. One of the other things people have commented on is that the skin tone on the characters doesn't look particularly realistic as a skin tone. Part of that can be attributed to the fact that we only have a single level of specularity. There's only one kind of power factor that goes onto everything. We can make brighter or dimmer specular highlights but we can't make tighter and broader specular highlights. That's mostly the result of the original engine being done on the notchy feature sets of the early register combiners for the NV10/NV20 class hardware. With anything that's DX9 class hardware or modern, that's basically NV30/R300 class, there's no reason whatsoever to have limitations to a particular specular exponent. We don't actually use an exponent, it's not a power series like a conventional cosine raised to a particular power. It's actually, in Doom, a kind of a windowed function that does some bias and squares, which was something that worked out reasonably on the early fixed function hardware, and was actually a little bit easier to control because it has a very finite falloff, where in theory classical phong shading with a cosine exponent doesn't cover completely falloff and you end up with a slight addition across everything and it's a little bit nicer to have that completely windowed off.

The fragment program paths actually do use a texture lookup table for the specular exponent, and I just made that texture to be exactly what was calculated in the earlier fixed function hardware, but you can easily replace that with anything that you want. What I've done in the newer renderering paths is made it a two-dimensional texture, so all of the specular lookups happen with an additional rendering map that has the specularity factor in there. What we call specular maps in Doom 3 are more commonly called "gloss maps," where it's just affecting the intensity of the specular highlight, but we now also add in new technology, the ability to change the breadth of the specular highlight. That lets you do a lot of interesting things with... the highlight that we've got in Doom is really quite broad for a specular highlight, and it's about what you'd get on a really dull plastic; something that wasn't very shiny, it's a kind of fairly broad, spread out thing. You don't get anything that looks like a really good metallic highlight, or things that would be shiny cast plastic, so there's a lot of neat stuff that you get just playing with that, and going ahead and having some that are even broader and some that tighten down a whole lot to give you bright little pin-point highlights on there.

The other issue with specularity is that you can see in some cases in Doom where if you have a really broad triangular surface or a broad surface with very low polygon tessellation. Doom uses half-angle interpolation for the specular calculation, again because that's all that was reasonable to do with the fixed function hardware early on. I much prefer to use actual reflection vector calculation which doesn't involve any non linear calculations in vertices. What that means is, if you take a really large box room in Doom and punch a hole in the centre of it so you've got some funny triangulations going on, and then you have a bright light with a specular highlight moving around, as you walk around, the shape the shape of the highlight will change quite a bit depending on where it is in the triangular surface, even though it shouldn't, based on the location of the viewer, and the light source. So that's another fairly straightforward thing that gets addressed where with reflection vector calculations, no matter what the underlying triangles tessellation is, you get exactly the correct highlight on there. Another minor thing you see in Doom, again on big flat surfaces with a specular highlight, is that there's a graininess to the specular highlight. That's actually mostly due to using cubic environment maps for normalization. When that's replaced with direct calculations, again, only in the ARB2 path, you get a better quality highlight, but there's still a small amount that goes in... there's two normalizations that happen. One of them I did replace with calculations, the other one is still with a lookup map. So there's a slight quality improvement to, again, placing that into mathematical calculations instead of texture lookups.

One of the other things you notice in basically everything using normal maps right now, when you've got specular highlights on there, and it becomes much more apparent when you add tighter specular highlights, is there's a degree of aliasing where... normally people think about aliasing just at the edges of polygons, where if you've got a thin railing you get an obvious kind of notchy pixel edge at the side when you've got it in front of a background that's lit differently. Hardware anti-aliasing does a good job at addressing this, but as we get more sophisticated with what we're doing inside surfaces we've got whole new classes of aliasing that are coming into it which are "in-surface aliasing" based on the actual texture calculations. So what happens in games that have normal maps on there is the calculations where you may have a specular highlight that happens at the interpolated point between one sample and another where one facet may be pointing up and one facet may be pointing off to the right, and depending on where the viewer and the eye is, some combination either at those points or in-between them, may have a really bright specular highlight, and Doom doesn't suffer from it too badly because the specular highlights tend to be very broad, but as you tighten it up it does get to be more of a problem where slight movements cause the bilinear interpolation (or trilinear interpolation) on the surface to generate normals that either approach or move away from the exact specular highlight, and that will cause little shimmery speckles to happen on the surface as things go in and out of the exact highlight point on the reflection vector. So this is something that I'm still working on various techniques to combat on there. The primary direction that I'm looking at is to go ahead and analyze the actual surface normals along with the specularity factor and basically broaden the specular highlight as more geometry is pushed into whatever may be covered by the filter kernel on there, and that seems pretty promising on there, and it works nicely. One minor drawback is that it does wind up having to tie together the specularity maps with the normal maps where you wouldn't have the freedom to take a single surface and flip a different normal map onto it without having a matching specularity map on it, so they become kind of multiple channels of a more complex data structure on there. That also takes away the ability to scale and rotate them independently because it again looks like just a deep multi-channel texture. Several of the things we do are sort of like that, where you could look at a given surface that has a normal map, a diffuse map, a specular map, a specularity map, a gloss map, a subsurface map, and all of these things. They can be treated sort of as separate maps, but if you start doing some of this analysis and modification across the different levels, they really become much more like a 14 channel or 16 channel deep single texture on there. That's one of the minor issues that I'm not completely clear on what I'm going to do enforcing that inside the engine.

Another thing that turned out to be a really cheap and effective quality improvement is doing renormalization of of the normal maps before it does all the lighting calculations. Now normally there's some benefit to when you have the hardware going ahead and doing trilinear interpolation on your normal maps, because you've got a normal pointing one way and another one pointing another way, when it does an interpolation between there that's linear it ends up having a normal vector that's no longer unit length. That's not a huge problem because most normal vectors tend to be pretty close to each other. But when you have tight little fillets and gouges between things you wind up having normals that may tilt over a 45 degree angle or so, and that is a significant amount of denormalization there. You can easily, in a fragment program based system, renormalize those after you fetch the samples. That exacerbates the aliasing problem with the in-surface specular highlights and such, but it makes a lot of surfaces look a whole lot better, where you can go up to surfaces that may have been, when you walk up to them, they would have been just more blurry smears right now, and with renormalization you can actually see a little one unit wide normal map divot becomes a nice corner rounded indentation in the surface. That's not that expensive and looks really good on there.

The biggest change that's likely to happen in a next generation renderer is moving to shadow buffers instead of shadow volumes. This was one of those large, key strategic decisions that had to be made early on in the Doom renderer. I had, early on, a version of the code that would render both shadow buffers and shadow volumes on there, so I could compare the different performance and visual quality tradeoffs on there. At the time there was a lot of speculation about which way things should go. Some people thought that shadow buffers might have been a better choice on there. Having done much more work on it now it's really clear that a generalized rendering architecture would not have been viable with shadow buffers in Doom's timeframe to cover our entire target market on there. What I'm doing right now is, it's not 100% clear yet that it's going to be viable for our next generation target on there, but I have pretty good hopes for it. We just have to get some cooperation with the video card vendors on some issues to get some of the performance issues cleared up as much as possible. The issues with shadow buffers are, when I was able to test them early on in Doom's development, without fragment programs, and without dedicated shadow buffer hardware which came for the first time on the Geforce 3, NV20 class systems on there, you could do things with alpha test and some other hacks to go ahead and compare against shadow buffers, and you could do multiple layers to crutch up the fact that you've only got 8 bits of depth precision, and you could make an engine that would work with that, but visually it looked really bad. Everyone complains about the hard edges with stencil shadows on there, but with the way you could do shadow volumes [did he mean "shadow buffers"? - Johnny] before, you had hard edges and they weren't even straight; you had these awful distorted pixel edges that looked really, really bad even at quite high resolutions. So when I sat down to work on the new technology, I sat back again, and the reasons you want to do shadow buffers instead of shadow volumes is mainly that shadow volumes require us to do a lot of work on the CPU, which does make Doom more CPU bound than I would prefer. So it makes things where you have to generate the coordinates for any animation on there on the CPU because you need to do shadow volumes off of that. And you need to do all these calculations even for static objects that are inside moving lights, or of course moving objects past static lights. The shadows silhouettes always need to be detected and generate new indices and vertices. There are things that Doom does to try to crutch up around there where with vertex programs we can have static lists of vertices for the shadows and just generate new indices based off of them, but it's still a significant issue. We spend a pretty good amount of time messing with the silhouettes on there.

With shadow buffers, the new versions that I've been working with, there's a few things that have changed since the time of the original Doom 3 specifications. One this that we have fragment programs now, so we can do pretty sophisticated filtering on there, and that turns out to be the key critical thing. Even if you take the built-in hardware percentage closer filtering [PCF], and you render obscenely high resolution shadow maps (2000x2000 or more than that), it still doesn't look good. In general, it's easy to make them look much worse than the stencil shadow volumes when you're in that basic kind of hardware-only level filtering on it. You end up with all the problems you have with biases, and pixel grain issues on there, and it's just not all that great. However, when you start to add a bit of randomized jitter to the samples, you have to take quite a few samples to make it look decent, it changes the picture completely. Four randomized samples is probably going to be our baseline spec for normal kind of shipping quality on the next game. That looks pretty good. There's a little bit of, if you look at broader soft shadows on there, there's a little bit of fizzly pixel jitter as things jump around on there, but the randomized stuff does look a lot better than any kind of static allocation on it. It should be a good enough level on there, and the nice thing is because the shadow sampling calculation is completely seperated from the other aspects of the rendering engine, you can toss in basically as many samples as you want. In my current research I've got a zero-sample one which is the hardware PCF for comparison, a single sample that's randomly jittered, four samples as kind of the baseline, and also a sixteen sample version which can give you very nice, high quality soft shadows on there. And I'll probably toss in even higher ones like a 25 or 64 sample version on there which will mostly be used for offline rendering work if people want to go ahead and have something render and they don't mind if it's running a few frames a second, you can get literally film quality shadowing effects out of this, by just changing out the number of samples that are going on in there. This wind up being very close to the algorithm that Pixar has used for a great many of the Renderman based movies, and it's just running in the GPU's now in real-time at the lower sample levels.

So that's pretty exciting because in addition to soft shadows which is the buzzword that people look at where, okay, you've got a shadow line on the floor, is it an exact binary difference between in light and in shadow or do you have a nice smooth umbra and penumbra area in there? The probably more significant aspect we get out of that is, the randomized dithering and jittering in everything that goes on in there allows us to go ahead and have good quality shadows on normal mapped characters. Now, there's a lot of things in Doom that are sort of limitations on what the technology does well that we just work around and you don't really notice them because we work around them well. One of the major ones is that if you have normal shadowing turned on surfaces that have a high degree of curvature encoded into the normal maps, basically like characters, and to a lesser degree on things like pipes and stuff like that in the world, the fact that it goes from binary light into binary shadow at a silhouette edge where you have normals that curve around that pass the silhouette should still be directly lit; gives you this very harsh lighting condition. Sometimes the designers crutch up for that by having fairly bright fill lights so that the shadow isn't very harsh but when we wanted to do stronger lighting, almost all of the characters have no self-shadowing set as a flag, which is a hack that we do in the stencil shadow buffering, so characters with this set will not cast shadows on themselves so you don't get the harsh silhouette shadowing but they still cast shadows on everything else in the world. There are a few things this screws up where it's not really unique per character on there, it kind of batches things into the two groups, no self shadow, and global shadow, so no self shadow things don't cast any shadows on other things and you'll see this sometimes where two monsters standing right next to each other with a light off to the side, they'll both cast shadows on the floor but if they're both "no self shadow" you won't get a shadow from one monster on the other monster.

The primary thing this prevents us from doing is dramatic close-ups on characters with self shadowed lighting going on, and this was one of the major limitations with what we could do with otherwise very high quality surface lighting. So, the shadow buffers solved that very, very nicely, in that you could have a light directly on a character even without an ambient light, and you get a soft silhouette on there, which really does what we need it to. So the other things with the soft shadows, there are... I've got it set up right now in my research engine where I can toggle between the original Doom renderer, and the new renderer. We're using mostly the same data on there. Soft shadows are held out as a grand new feature, but for the most part when you walk through Doom, toggling between soft shadows and the regular harsh shadows in Doom, there's very few places where it makes much of a difference. If you're just toggling between them, somebody a little ways away from the monitor won't even notice it unless there are items that are set in as "no self shadow" that wind up getting shadows on them, that's the only thing you really notice when you're just flipping between it. There are a couple scenes where you look a lot closer it's really nice to see a good soft shadow on everything there, but for the most part it doesn't make a huge difference. Part of that is because the designers know not to put in things where harsh shadows look bad, so they'll have a bit more artistic freedom with that. But the primary benefit of it is going to be 1) getting proper self shadowing, gettingrid of the silhouette problem on major characters, and we should eventually see speed-ups on this by unloading the CPU from the shadow calculations. However, at this point right now, the shadow buffer solution is quite a bit slower than the existing stencil shadow solution.

Some of that is due to hardware API issues. Right now I'm using the OpenGL p-buffer and render-to-texture interface which is a GOD AWFUL interface, it has far too much inheritance from bad design decisions back in the SGI days, and I've had some days where it's the closest I'd ever been to switching over to D3D because the APIs where just that appaulingly bad. Both ATI and Nvidia have their preferred direction for doing efficient render-to-texture, because the problem with the existing APIs is not only are they crummy bad APIs, they also have a pretty high performance overhead because they require you to switch OpenGL rendering contexts, and for shadow buffers that's something that has to happen hundreds of times per frame, and it's a pretty big performance hit right now. So, both ATI and Nvidia have their preferred solutions to this and as usual they're not agreeing on exactly what should be done on it, and it's over stupid, petty little things. I've read both the specs, and I could work with either one, they both do the job, and they're just silly syntactic things and I have a hard time empathising why they can't just get together and agree on one of these. I am doing my current work on Nvidia based hardware so it's likely I will be using their extension.

The issues right now with the hardware are, the NV40 has a few things that make development easier for me. It has floating point blending, which saves me some passes for what I've been doing, well certainly have fallback positions so anything we do with blending we can do with an additional render and another texture copy pass on there, to work for NV30 and R300 class hardware. It's nice, and there's also the pretty much unlimited instruction count on the NV40 where there are times I'm writing these large fragment programs and it's nice to keep tacking more and more things in there as I look at it but I know full well I'll eventually have to segment these into something that can run on R300 class hardware. The other issue on just raw performance on the shadow buffers is that a lot of people used to think that stencil shadows because of that in the basic direction you'd be rendering front faces, back faces, and silhouette edges that it was going to be this large polygon count increment. It is a lot of extra polygons, but what wasn't immediately obvious was that in all the cases I'm testing so far, the shadow buffers actually require more polygon draws than the stencil shadows. The reason for that is, of all the demos that you see of shadow buffers, in order to make it look good and performance attractive it's always a projective light with a relatively tight frustum. You see comments like this in the Renderman books where you say, "Try to make your shadow lights like a 20 degree spotlight and use a 2k x 2k texture, and you'll get good looking shadows and everything on there." The problem is with games, 99+ percent of all lights are omnidirectional point lights. To render a point light with a shadow buffer you need to have an enclosing polygon on there which, the most straightforward way to do it is to have six planar projections on there. Now what happens here is that any time you have an object that crosses these frustum boundaries it has to be rendered multiple times. And again, in your typical standard graphics demo where you've got a fruitbowl on a flat plane, the whole object fits into one frustum projection and it's obvious you only need one extra rendering of that geometry to create a shadow buffer, then you use it. Again, however, in real life, or at least real game life, we have many many objects that a part of the scenery, that instead of being contained inside a light frustum, many object contain entire lights when you're looking at parts of the room, which means some of the geometry needs to be rendered up to six times on there. Even when it's rendered, on average, maybe twice, it's still more polygons than you'd see with the stencil shadows.

So that's an interesting performance characteristic from there, but polygon rates on the hardware are really really high now and only getting higher, so I don't think that's going to be a huge issue. Another factor involved is, what you see with offline rendering tools that use shadow buffers a lot, you commonly have to do little tweaks to the bias to get things exactly right. There are two kind of standard problems that you have with shadow buffers that are artifacts. When you have the bias set too low you get what's called "shadow acne," where you get dark splotches of shadow on surfaces that are directly illuminated because the values there weren't enough to bias completely off the surface. When you've got jittered sampling on, that gives you just kind of a dimmer look to them with a little bit of extra noise, and it's not HORRIBLE but it's not something you'd really like to have. The other artifact you get when you have shadows too large is you get shadow pull-away which is when you've got a surface that actually contacts a floor, but the shadow doesn't start, say, right at a characters heel, but it starts some number of pixels behind it because of the way the biases work. And that's a fairly objectionable artifact when you look at it, where you see benches and things like that with the shadows not starting directly at them. There are a few things that make this difficult in a number of ways. One problem is the depth buffer, if you use a normal depth buffer for this, isn't linear. Because it has a perspective projection or perspective warp into the depth buffer, if you have a bias that's correct for something that's right in front of the light, it's actually incorrect for something that's a long ways away. That's a pretty fundamental problem with that. It can be addressed by, instead of using depth buffering and the actual real depth buffer you could have your fragment program render out an alpha channel that's a floating point value that's in linear object space, and you could have consistent depth values across everything like that.

Another issue is if you just programmatically add a bias value in like when you're rendering or when you're comparing against it, you're again adding a linear world offset to your non-linear depth offset. You can sort of fix that by using polygon offset rendering to add a non-linear, small unit bias on there. A problem with that is, you can add the offsets there, several people suggest using the polygon offset factor calculation to offset from the slope of the plane, that's not usable in a robust, real engine because for any factor value that you get you'll eventually find some cases where tiny sub pixel polygons have a factor plane calculation that is almost infinity, and you will get these things where, if they're multiplied by anything, they'll drop in and out of your shadow map. I saw that when I had some of those in there where I would occasionally get one pixel out of a shadow map that would be clear to the light even though it was completely inside an enclosed mesh on the character. And that was just because some tiny little polygon turned almost edge on to the light and the factor value blew it out through the back of the world and you got to see through that. Which would show up when you had a light that was projecting from a long distance with a relatively low resolution map, you see the little bright speckles sometimes jumping through things. The solution to all the bias problems is, there's a completely robust way of doing it that solves all the problems, and that's to actually render two shadow buffers, one using front facing triangles to the light, and the other one using back facing triangles to the light, and then you combine those together to find a midpoint value between all the surfaces. That works great. I haven't seen any situation where that doesn't do as good a job as possible. Unfortunately it means twice the shadow renderings for shadow buffers. The current plan of record is, we will probably be using probably back face renderings as our default, and we'll offer midpoint rendering as a higher quality option with a performance cost. This will likely become a highly optimized path for the hardware vendors.

Another somewhat interesting aspect of the hardware interactions on this is it may very well turn out to be that 16 bit depth rendering, which is a mode that is almost not used at all by any current rendering systems, we like our 24 bit depth buffers for rendering views because we all want to render large outdoor scenes that easily swamp a 16 bit depth buffer, but 16 bit depth buffers may be very useful for shadow buffers. Not only do they take up less memory for very large ones, but they should render somewhat faster and sample somewhat faster. Because most lights won't have these incredibly large frustum distances we see with views on there. So, there are a few things that become more challenging with the shadow buffers. There are issues with stitching together the multiple planes where if you do six renderings of a cube face to go ahead and make an omnidirectional light, you want them to meet up seamlessly and not have any double-shadowed or double-lit surfaces, and you don't want to have the jittered sampling noticably change planar orientation. That was something that took a little while to work out perfectly, but it does the job right now and you can't really tell any difference on it.

Outdoor lighting is something that becomes more challenging with shadow buffers. If you wanted to do a straightforward parallel projection from sun or moonlight onto your world, you would need a high enough resolution on your shadow map that would basically cover everything in your world or everything that could be seen on there. Even if you chose a very large value like a 2000x2000 map and you had a decent sized outdoor world area you would find that the shadows that you get from trees and little things protruding up from the ground would be very blurry and fizzly because there's not enough texture resolution there. There's been some research done by people exploring "perspective shadow mapping" where you try to use a perspective warp to get more detail from a given shadow map resolution where you are, and I don't think that's going to be a very usable solution for games because there will always be a direction you can turn into the light where the perspective warping has very little benefits or even makes it worse, where you wind up with more distorted pixel grain issues. So the solution I'm looking at for outdoor lighting is a sort of multi-middle, propped mip-map of shadow buffers, where you have your 1k x 1k shadow buffer which renders only, say, the 2000 units nearest you, and it's cropped to exactly cover that area dynamically, then you keep scaling by powers of two on there until you've covered the entire world, which may require rendering five or six shadow buffers depending on how big your outdoor area is. It's not really that big of a deal and ends up being like rendering six views for a single point light for an indoor area. I think that's a pretty solvable problem.

There are a lot of interesting tradeoffs that get made with the shadow buffer approach on there. Like there's an obvious thought with, well, you'd like to use cube maps for rendering your shadow buffer on there where you render your six views into the cube map and just sample the cube map. Current hardware doesn't deal with that well because you wind up using one of the texture coordinate values as the "compare to" value and you can't directly do it now, although there's some hacks you can do with referencing a 2D texture and referencing a cube map that indirects into an unrolled 2D texture. But interestingly, it turns out that that's not even what you really want to do. To do efficient shadow buffers in a real game engine you need to be changing the resolution of these shadow maps all the time. If you're seeing 50 lights on there you can't render 2k x 2k shadow buffers for everything, especially when a lot of the lights may only be 50 pixels across in their affected area. So what I do is, I dynamically scale all of the resolutions for every single light that's drawn based upon how big it is on screen, and you can throw other parameters into the heuristic you decide on using that. But because of the way I select out the areas that are going to be recieving shadow calculations on there, for which I actually use stencil buffer tests so all the work with stencil buffers, and all the algorithms from that is still having some payoff in the new engine, even though we're not using that directly for shadowing. But because of the way I select areas of the screen for that, I don't require clamping, or even power-of-two texturing on the shadow buffers, so they will smoothly scale from 2000 to 1900, 1800, and so on rather than making any kind of power-of-two jumps from 2048 to 1024, various things like that. That also ends up saving a really significant amount of memory. We're looking at large buffers here, where a 2k x 2k one with a 24 bit depth buffer, you know, that's 4 million pixels at 4 bytes each, if you were storing a full cube map on there, that's a good chunk of your total video card memory right there, so it actually pays quite a bit to go ahead and render one side at a time, at least on lights that are close up. There would be some performance benefit to having all those smaller lights where it doesn't take much space on there rendered directly as cube maps. There's a pretty appalling amount of upcoming 3D hardware to allow this single path render into cube maps. I have not been a proponent of this. I tried really hard to get this stuff killed at the last Windows Graphics Summit. It didn't work out, and all the extra stuff went in, and the hardware vendors I'm sure will eventually get it all working right, but I question the actual utility of the a lot of the geometry processing stuff going in there with replicating all the viewports and scissors with having basically six different rendering views you're dealing with at a specific time. It was all driven by this thought that we're gonna render shadow buffers, toss the geometry down one time and the hardware would spit it all out into the different bins, and as it turns out it's not really that important, and when you do that it ends up having some of these other performance implications where it's not nearly as big of a win as people hoped it would be on there. Even when you do all that it's a fair amount of hardware cost that's required to implement all of that.

So, the shadowing is THE big question that goes on there. I have it working, looking good. It doesn't handle all the picky cases now. I don't have the outdoor lighting done. I don't have proper individual light specification for how blurry you want the edges to be. It is worth noting that with shadow buffers the edge blurring that you get isn't a real shadow umbra and penumbra. The soft part of a real world shadow is related to the size of the light emitter, the location of the occluder, and then the location of the surface that it's on. And you get the different effects like the broadening of the soft shadow from the exact point from where it intersects the occluder and the surface to a broader one as it goes much further out until eventually, small occluders are completely subsumed by a broad extended area light source. And you don't get those exact effects, but again this is the standard for many film quality renderings that have been done for years, and it gives the designers the control that they need. They can say, "Well this light is going to have a broad angle on it and we're going to get fuzzier shadows, while this one over here we have some of the light extending over such a large area we're gonna tighten it down to reduce the noise," and there will be a little bit of tweaking going on there in a lot of different parameters. So in some ways there will be more hacking going on a per light basis than there were in the stencil shadows because the stencil shadows are what they are, they do the exact pixel same thing no matter what the geometry is, no matter where the light is, and there will be a lot more judgement calls going on with this.

So another major thing that will be going on is lots and lots of surface models. There are some specific things we'd like to do with adding things like subsurface scattering to make skin-tones look better, partial translucency to let you get the kind of glows through edges of partially translucent things, like backlit earlobes. Things to do better hair, and so on like that. I was kind of surprised when I asked Tim what the thing he'd most like improved in the rendering from a game designer’s standpoint. The biggest gripe was order independent translucency. Doom does not have a proper solution for order independent translucency. We had basically the same approach we had in Quake 3 where you can assign sort values to different materials, and lower sort values will always be drawn before later sort values. There are situations that fundamentally don't work with that, where if you have two alpha blended surfaces, and you can go to both sides of them, where object A draws in front of object B, and object B draws in front of object A, with the current engine we cannot make that look exactly right. We would have to do something silly like tell where the player is and change out the materials to things with different sort orders. It will look right from one side and the other side will have this obvious mis-blend on there. Now I had a good theory on an attempt to solve this, there are a couple directions that I've got that are my options for solving this. One path is to go ahead and have separate layer views, where in addition to rendering your direct normal view on there, you may have multiple translucency layers where the engine figures out where they overlap and if you've got overlapping translucencies it goes ahead and spawns off another buffer and then it puts them together as necessary. That still doesn't solve single surface self intersecting translucency but that's not a problem I think is really important to solve. The drawback to that being it could potentially chew up a lot of video memory where if you run into something where you have three translucent planes and it needs to render those out separately, that could be many many megs of video memory spent doing that. That's something where virtualized video memory would help out a lot with because most of these won't cover the entire screen, but it is an issue.

The other thing that sounded like it was it was going to be the best direction and may still be our baseline approach is to attempt to do all the translucency in the single framebuffer but kind of sparsely scatter the pixels that are translucent on there so they don't interfere completely with the other pixels, and then use post-processing to kind of blend the contributions together. I actually tried some of that early on with Doom, but without the ability to have good post-processing filters on there. It was completely unacceptable, just a fizzly mess on there. However now that we have the ability to do broad filtering, and I'm doing a lot of things at the backend with filtering to improve various things, with that I was able to setup some demos of translucency where, the simplest possible case is, say you want a 50 percent translucent object, you use a separate texture to basically do a stipple test where you only have 50 percent of the pixels used for that, and they're completely opaque pixels as far as the renderer is concerned, half the pixels inside this area have the translucent object, and half of them are just showing through to what's behind it. From a rendering standpoint this works really nice, you get all the exact lighting and shadowing and everything works because everything is an opaque surface, and then you have a final pass that renders over the translucent objects and basically blurs together the four surrounding pixels there. When you have a fixed pixel grid like that, like half of them or every fourth one, and it's on a regular pattern like that, it looks great. It's perfect translucency, accepting shadows and having the light on it, having the translucency to see behind it, and it works great. The problem is, at that level we can do an improvement over what we've currently got. If you were able to specify for a given translucent object what it's sort of stipple pattern would be, you can then have object A and object B have non-interfering stipple patterns, or only interfering in a particular case, then you get your order independent translucency and that works wonderfully. It's more of a problem when you start wanting arbitrary levels of translucency.

Now, you can do that in a dithering operations where if you're using a 2x2 or 2x4 dither mask or stipple pattern for this, you can go ahead and have your fixed values on there, and then either statically or randomly offset the opacity value that you get from either an opacity map or alpha interpolator or whatever you're getting from there. And you can blend that all in and randomly choose between these, but that hasn't been completely satisfactory to me so far, where even if I put in a fairly broad filter kernel if it's randomly picking the different stipple patterns there, it get still a little too visually noisy for me. So I've got a few different levels I've got on here where the easiest possible thing is, we can set it up so we have this randomized stuff where we have these certain good high quality levels which may be 25%, 50%, 75%, whatever, that look perfect, and when you're in between interpolating those you get more and more noise added to it, which is kind of the direction I'm leaning towards right now but we'll only be able to see later on when we get more media, how much trouble this is actually going to be.

So there are a lot of interesting graphics technologies that may or may not make it into the next engine. A lot of things, because we've got the flexible programming interface now just get tossed in without really affecting the engine. Anything that's a non-interactive surface or that's specified with the same environment we'd use for our normal lights, it's easy to just throw in a programmable factor there. The art and craft of engine design is really about what fundamental assumptions are going to be built into the core engine. What's going to be exposed as programmable features in there. How the work flow of the content creation and the utilization of the engine are done. It's tough to say how important some of these things are, like internally there are a number of things I consider flaws with the Doom engine, for instance, surface deforms, where you have something that's an auto-sprite or uses some other deform, that happens in the wrong place in the pipeline to get lit. That's obviously something we want to fix in the next generation engine where all geometry gets lit and shadowed exactly correctly across everything. There are some interesting aspects to the fact that I wrote the core Doom 3 renderer, which could render pretty much the same pictures we've got now, four years ago, and I did it in C. I basically took Quake 3 at the time, took out the renderer, wrote a brand new renderer in C, fitting it in there and testing it like that. When the whole team started working on Doom, we did make the decision to move everything over to C++. We got everything included, started building the new pieces of the codebase in there. All the additional work on the renderer since then has been in C++, but there's still sort of a C legacy to it that the new renderer won't have, where things will be communicating with objects rather than passing structures. I got sort of half way to changing that in Doom, when you look in the SDK in the headers you'll see what were going to be nice new class interfaces, but it's still setup where you pass handles to render entities and render lights along with data structures on there where that really should just be a class.

It's kind of interesting that when I started on the research for the next generation engine a couple months ago I sat down and started testing some of these things; building some of the actual rendering test features, and it was interesting to see that in this kind of experimental mode I did just fall back to functional C programming for things. I wound up making a class to encapsulate the awful pbuffer and render to texture interfaces. But when I'm just hacking around on graphics it feels more natural to just use a functional programming interface. I'm curious if that's just me or if that's the way graphics tends to be done on there. When you start building an actual engine that's going to be interfacing with a lot of different things, the kind of interface rigor of object oriented interfaces are beyond question valuable on there. The internals are still a bit C-ish, even with the brand new stuff. A lot of the issues with rendering engine design aren't with these things involved with actually drawing pictures because everybody draws things the same way now, no matter what you're drawing it winds up being binding a fragment program, a vertex program, setting some parameters, binding some textures, and then drawing a bunch of triangles, that's the same at the core of absolutely everything everybody's doing now if you're using 3D hardware. So in theory, all engines can draw media from all other engines because at the bottom line there, they're all doing the same thing. All of the innovations and important decisions get made in how exactly you determine what the geometry's going to be, what the textures are going to be, and what the programs are going to be, and that's one of the things I've always been down on, is when people do shader previewers and things like that, and shader integration into tools like 3D Studio and Maya, those are not very useful things. Yes, it lets you take this bottom line of take a program and throw some geometry at it, but all of the interesting things that happen in the game engine come from things like interactions and parameter passing and how the game world is determining the parameters that are used for the rendering, how the rendering engine composites together different layers of effects or different parts of programs. So you're not going to have that many things that are just "here's a fragment program." You'll get that for special effects, all the artifact effects where we've got the heat haze thing I threw in late in the game which is used all over the game just because people liked that type of little thing, so there are special effects like that where you'll get some use from "here's the fragment program that does the special effect." But so much of the stuff is going to be dynamic composition of the different programs where if you've got opacity mapping where you have to determine which areas are going to be combined with arbitrary interaction programming, combined with different shadowing programs, combined with deformations of the top level surfaces, there's undoubtedly going to be this dynamic combining of different programs in there. That's one of those things where I'm not exactly clear yet what the solution is going to be, so whenever I'm in those cases I usually implement a couple of different paths and just see what works out best. There are many different directions you could possibly take.

One of the easiest ones that will probably get tried first is adding sort of macro-capability to the fragment programs where you could say, "light calculation here, stick it in register R0," and that might do light combination by two projected textures, or it could do an actual distance based calculation or use a 3D light. There's a number of different things you might want to have for light shaders on here that can be combined with arbitrary surface shaders. And you get certain things like that where you want to be able to toss a deformation onto an arbitrary surface rendering. You want to be able to say, I want to be the "grass blowing in the wind" deform on these multiple different things... we've got sticks and grass and those different things here that could be used in the static surface but you also want to be able to have them deformed. That winds up being more complex if you have different tangent space calculations on there, where there are some potential advantages to using global maps instead of local maps even for deformed things where you're deforming multiple axes rather than just moving the vertex around. And if you have that type of thing the sense of what is a normal map may be different. We also have some things like height maps may be included in the game, even though they're very inferior to normal maps for surface characteristics, but height maps can be used for other things, like if we eventually have a displacement mapping option in the game, you would need a height map rather than a normal map on there.

There's some cheap hack things, like I put in a trial of surface warping based on the height map to kind of fake displacement mapping. That didn't work out well enough, where you can make a few textures where it looks really cool and awesome, but if you try using it on things in general you get too many places that are kind of sheared and warped and not looking very good on there. That's an example of something that's an easy effect to have in, and we can use it for some special effect surfaces and interesting things like that but it's not a generally utilizable function. Heightmaps will also be needed if we do things like bump map occlusion, so you get self shadowing amongst the bumps in different areas, again that'll be at the cost of an additional texture. More problems there. I have some interesting thoughts for being able to do sort of a screen space displacement mapping, where we render different offsets into the screen and then go back and render the scene warping your things as necessary for that, which would solve the T-junction cracking problem that you get when using real displacement mapping across surfaces where the edges don't necessarily line up. There's a lot of interesting things that we can be doing there. We'll start media creation with the new engine pretty soon, in a month or so I expect the artists will start using some of the new features like the specularity maps, and building scenes with the soft shadows, and so on like that. I am kind of waiting on some help with the hardware vendors to get the shadow buffering up to the full performance that we're going to need to have that as a replacement. I would expect that by the end of this year we'll probably be rendering some demo scenes that will be indicative of what the technology is eventually going to be producing. The renderer will take another full year to mature to its full form as far as interfaces, what the programming APIs are going to be, and how the media for programming it is going to be used.

But I do expect at the end, the capabilities you're going to have, you're probably going to be programming things at surface interaction level, light level, deformations, opacity level, where if necessary you can stick in full programs to do exactly what you want there. We're going to have nearly the capability of a traditional scanline offline renderer, and if you want to take the game and crank the values way up, like you can use textures as big as you want, you'll have lots of places where you can turn the sampling levels up higher, like if you want your high dynamic range light blooms to be really really accurate on there you can, say, instead of downsampling three times, you can do them on the native frame buffer level, instead of using a seperate gaussian filter go ahead and use this real 100x100 actual filter on there, if you really really wanted to have perfect starburst lines coming off of things, and there will be these areas where changing the data will let you crank up the performance or the quality at the expense of performance to things that are really, honestly film quality rendering. That term gets thrown around constantly like, since the advent of hardware accelerated renderings and lot of people mention things like that for Doom, but we're still living in a notchy feature set on the renderer, and there are still immense amounts of things the game engines can't do that you need for offline rendering. With the next engine you're not going to have absolutely every capability you'll have for an offline renderer, but you will be able to produce scenes that are effectively indistinguishable from a typical offline scanline renderer if you throw the appropriate data at it, and avoid some of the things that it's just not going to do as well. We're seeing graphics accelerated hardware now, especially with the multi-chip, multi-board options that are going to be coming out, where you're going to be able to have a single system, your typical beige box, multiple PCI-express system stuffed with video cards cross connected together, and you're gonna have, with a game engine like this and hardware like that, the rendering capability of a major studio like Pixar's entire render farm, and it's going to be sitting in a box and costing $10,000. And not only does it have the throughput of a rendering farm, where you're looking at, in terms of total frames possible rendered in a given amount of time, the important thing is it's going to have a fraction of the latency of it. If it takes 30 minutes to render a film quality frame, you can throw 1000 systems at it, and render a whole bunch of frames, but it still takes 30 minutes to get your main frame back. If you can kill the latency down like that where you're actually rendering it in 1/1000th of 30 minutes on there, that's a far better thing from a creative standpoint. I think there's going to be some interesting stuff going on. Already there are studios working with hardware accelerated renderers.

They're coming at it from a different angle. They're coming at it from, "how can we take a real offline renderer and start using GPU technology to accelerate some of it?" While we're coming from the side of, "how do we make a game that's already designed to use this very efficiently begin to have all of the features the offline renderers have?" There will be some pretty interesting overlaps between the approaches. A few years from now it's going to start seeming like an anachronism when a few studios decide to absolutely stick to their guns on the huge offline rendering things. There will still be the case for multi-hundred-million dollar film studios where they absolutely must get certain reflections exactly the way they want, certain filtering exactly the way they want, but everybody that's cost conscious is going to be moving towards this sort of GPU accelerated real time rendering. We'll probably see it first in TV shows, but it will not be long until film quality rendering is at least using GPU acceleration of classical style renderers, and perhaps in some cases using effectively game rendering engines.

There's an interesting thing to note about engine technology in general. We've got a good example here. Doom has probably gotten more universal praise for the quality of the audio than it has for the graphics. Now there's some lessons to be learned from this. I took over the audio engine work this last year after Graham left, and we made some really large changes with exactly what Doom was doing for audio. When we started off we knew we had a lot more CPU power, and we could do some sophisticated things with audio. So, the original Doom audio engine had head modelling, room modelling, all of the typical DSP high end stuff that you think about doing for virtual environments and simulations. It sort of worked, but we had these option flags where you could say "plain sound on here," where the sound designers didn't like the way things were sounding because the engine was mucking with all the sounds, you would just set it to plane. We were using this in an awful lot of places on there. When I took over the sound code, I basically redid everything so it basically had none of those features, and all it does is 1 to 1 mix the audio data that the sound designers have actually created, and it does some mildly interesting stuff for localizing the sounds through portals, but basically it's a really simple engine, it's not much code. The code is less than half the code it was when I took over the codebase there, and it's nice and robust now, and it does what it does predictably exactly what the sound designers want it to do. So this is a case of, it looks like we've got phenomenal sound on all of this, but it's very straightforward basic thing that, it's exposing a good canvas for the designers to work on where they know what the sounds sound like, they want them to be like this, maybe just quieter, depending on as you're going around. We've got the ability to have them play non-localized stereo sounds, have sounds that cut off a few basic features you've got like "do you want it to be occluded?" "Do you want it to do portal chaining on there?" But basically all it's doing is taking the sounds, multiplying them by whatever the current attenuation factor is, and adding them together.

This is something where there's always a danger of running into kind of the sophistry of excessive complexity and sophistication in an engine, and I think we ran past that with sound recovered and produced exactly what we needed to on there. That's also always a worry with graphics technologies, where you can do really sophisticated things that might be very correct, especially with light transport; we know exactly how light works, we can simulate light very precisely. If we want to spend the time we can do photon tracing and radiosity and all of these things. But in many cases it turns out that not only is that perhaps not necessary, but in many cases it's not even what you want to do from a game design standpoint. For instance, right here while I'm being videoed, there are a number of lights setup to provide a better view of what's going to be captured onto the video, rather than the natural lighting of the room that I'm in, and in offline renderers they're constantly setting up lights that don't behave exactly like real lights or ignore surfaces, or don't make shadows, lights that only cast onto certain things... I've always thought that the important things were to provide tools that behave the way the designers expected them to. So if you give a craftsman, you know, you've got talented people creating the media, if you give them tools they understand and that work the way the want them to, and hopefully work with a short latency that will allow for them rapid turnaround and good incremental viewing of what they're working on, that's the most positive thing you can do in a game engine.

Doom made several really significant advances for that in terms of media creation. Obviously the level editor, being able to have the dynamically updating lights and shadows while you're working on things was a really big advance. Having everything setup for really fast rapid media reload was another big deal. Getting away from the complex offline processing that we have in the Quake series of games changed it from a 30 minute relight or revis time to immediately just moving a light or changing its color and seeing it right then and there. We've got some things we're expecing to improve in the next generation for tightening the integration between game editing, and level editing. That was one thing where, for a long time I was a proponent of seperate tools, and I still think I had plenty of good reasons at the time we did these things, while some people had integrated level editors into early games, and we used separate programs because we were using separate hardware at the time for that. We had really high end workstations we could run everything on, while some people were editing their games basically on the target consumer platforms. But now that those specs have basically merged, Doom Did The Right Thing and integrated the level editor, but there are a lot of things we can do to take advantage of that integration that we haven't yet. Things like being able to play the game and dynamically change something, we have the sound editor integrated with the game, where the audio designers can run around and modify the sounds literally while they're playing the game. It's obvious we should have light editing the same way. And then there are a few things that will follow that same route but will take a little more programming design effort to setup, like we should be able to reset object positions while you're playing the game; you should be able to just knock it back to its spawn position and adjust things around and conditionally restart the level in different places. That's a lot of design work we're going to be going over in the high architectural level between things.

The overriding concern for us is that we don't want the next game to take as long to make as Doom did, so we're going to be pretty rational about how grand we're going to be making these changes. I'm confident the renderer will take less than a year to make, which gives us plenty of time to go ahead and get full skill base and utilization and have time to polish everything with that. But most of the other changes throughout the system, we're going to try to have things setup so that we don't force the level designers to work with really broken stuff for a year or more before they can actually really start working on things. We're all pretty excited about where we're going with our next title. We're not saying much about it yet, but I think it's actually a pretty good plan when you're pushing new technology, like the new Doom engine, to have the first version to come out be the single player experience where people are expecting it to run a little bit slower, and you can tolerate all that in those conditions. Then when expansions and sequels and things like that come out you can use the same technology with another year or two of hardware progress, all the sudden what was a borderline experience on one system speed wise becomes again sixty frames per second running locked on later hardware. That's a better environment for multiplayer because with the multiplayer systems we're over the knee of the curve for the benefit you get from adding cool new graphics to multiplayer systems. Really the most popular multiplayer games really don't have all that good of graphics, and they're really popular because they're fun. Now we can certainly make good games. We think we do good game design with all of our current stuff, but if id Software wants to play to our strengths as a company where we've got all this great technology and media in addition to game design and gameplay work on here, we're going to be producing another game that has a strong immersive single player experience, with a minimalist multiplayer, again, about the level of Doom, where it's there, it's a basis, if people want to expand upon it, they're free to, and then we'll have partner companies probably work on taking it to the super high level of polish that's sort of demanded for an online multiplayer game nowadays.

I thought about showing little snippets and scenes from the new technologies that I'm working on here, but we decided that programmer demos just don't put our best foot forward, and I'd hate to have some blurry shot that somebody took from here posted up on all the websites as id Softwares new technology that shows my box room with some character in it and some smudge that's supposed to be really cool on there. Next year when the designers have had the ability to build new media that exploits the new capabilities, we'll be showing some really cool stuff.
